SELECTION OF FIRST LINE THERAPY FOR EXON 20 INSERTION

DR. SHRUTI KATE

CONSULTANT MEDICAL ONCOLOGIST

HCG NASHIK

UNCOMMON EGFR MUTATIONS

 Table 2
 Uncommon
 EGFR
 mutation
 frequency
 and
 their

 distribution according to predicted sensitivity to oral
 TKI
 <

Uncommon EGFR mutation types		02 100
Uncommon EGFR single mutations		83 %
Exon 18 G719X		
Exon 20 insertion	8	9.6
Exon T790M	15	19.3
Exon 20 768/	10	12.0
con 21 L861Q	3	3.6
	3	3.6
		-

Lung Cancer: Targets and Therapy

Dovepress

open access to scientific and medical research

open Access Full Text Article

ORIGINAL RESEARCH

Outcome of uncommon EGFR mutation positive newly diagnosed advanced non-small cell lung cancer patients: a single center retrospective analysis

> This article was published in the following Dove Medical Press journal: Lung Cancer:Targets and Therapy

Shruti Kate¹

Anuradha Chougule² Amit Joshi¹ Vanita Noronha¹ Vijay Patil¹ Rohit Dusane³ Leena Solanki¹ Priyanka Tiwrekar² Vaishakhi Trivedi¹ Kumar Prabhash¹

Department of Medical Oncology,

Background: The significance of uncommon EGFR mutations in newly diagnosed advanced non-small-cell lung cancer (NSCLC) patients is incompletely known. We aimed to analyze the demographic profile, outcome, and treatment attributes of these patients.

Patients and methods: We retrospectively surveyed 5,738 advanced NSCLC patients who underwent EGFR testing in our center from 2013 to 2017 by in-house primer probes on real time PCR platform. Descriptive data were accumulated from electronic medical records. Survival plot was calculated using Kaplan–Meier method and compared between groups using log-rank test. **Results:** Out of 1,260 EGFR mutation-positive patients, 83 (6.58%) had uncommon mutations in isolation or in various combinations. Uncommon mutations were more frequent in men, never-smokers, and adenocarcinomas. Overall, exon 18 G719X, exon 20 insertion, exon 20 T790M, exon 20 S768I, and exon 21 (L858R/L861Q) were present in 9.6%, 19.3%, 12%, 3.6%, and 3.6% patients, respectively. Dual mutation positivity was found in 50.6% patients. On classifying

Impact of deletions and insertions on EGFR activation. Upon ligand-binding, the regulatory C-helix pivots from an outward, inactive conformation to an inward, active conformation to form key interactions with the p-loop of the active site located in the cleft between the N-lobe and C-lobe. Oncogenic mutations such as exon 19 deletions can "pull" the C-helix from the N-terminal side whilst exon 20 insertions "push" from the C-terminal side to stabilize the active state of EGFR even in the absence of ligand

- EGFR Exon 20 insertions are 3rd most common EGFR mutations ,occur in 2% of NSCLC patient & 4 to 12% of patient with EGFR mutations.
- Common Exon 20 insertions- -insASV ,insSVD and insNPH.
- It is preferable to do NGS, PCR based assay may miss some Exon 20 insertions.
- Low response rates to TKIs- 13% ORR across second line treatments, with a median PFS of 3.5 months.

Yasuda H, Kobayashi S, Costa DB. EGFR exon 20 insertion mutations in non-small-cell lung cancer: preclinical data and clinicalimplications. Lancet Oncol 2012;13:e23-31.

Vasconcelos P, Gergis C, Viray H, et al. EGFR-A763_Y764insFQEA Is a Unique Exon 20 Insertion Mutation That Displays Sensitivity to Approved and In-Development Lung Cancer EGFR Tyrosine Kinase Inhibitors. JTO Clin Res Rep

- Pre-clinical in vitro evidence in engineered cell line models has suggested that osimertinib may have some activity against EGFR exon 20 insertions, albeit with a weaker potency than afatinib.
- However, the evidence to support osimertinib as a candidate inhibitor for EGFR exon 20 insertions in vivo remains unclear.
- A study of lung cancer patient-derived xenograft (PDX) models harboring EGFR exon 20 insertion mutations showed poor responses to the third-generation EGFR inhibitors osimertinib and rociletinib.
- A phase II clinical trial to assess osimertinib as a treatment for EGFR exon 20 insertion mutant NSCLC (NCT03414814) is ongoing.

Mutation types	N=83	mPFS (months) first line therapy	95% CI	Log rank (Mantel–Cox)	m OS (months)	95% CI	Log-rank (Mantel–Cox)
	Entire cohort	6.7	4.7-8.6		15.8	10.1-21.5	
Specific	Exon 18 G719X	8.4	1.8-15.1	0.82	13.5	0-29.9	29.9 P=0.005 -25.3 - -15.2 - -3.1 2.6
mutation	Exon 20 insertion	6.0	2.4-9.6		15.8	6.2-25.3	
types	Exon T790M	8.2	3.4-13.1		12.3	9.4-15.2	
	Exon 20 768I	2.0	NE		2.0	0.9-3.1	
	Exon 21 L861Q	1.0	NE		1.8	0-2.6	
	Exon 18 G719X, exon 20	4.8	NE		4.8	NE	
	S768I, and exon 21 L858R						
	Dual mutations	6.9	3.2-10.7		22.6	8.2-37.0	
Mutation types by TKI sensitivity	TKI sensitive single mutation (exon 18/20 7681/21 L861O)	6.5	0.6-12.4	P=0.68	12.7	0.0-30.5	P=0.039
	TKI insensitive single (exon 20 insertion/T790M)	6.0	5.5-6.5		12.9	11.1–14.7	
	TKI sensitive dual	4.6	0-9.5		9.6	3.6-15.6	
	TKI sensitive + insensitive complex mutation	7.8	3.1-12.4	1	28.2	15.2-41.2]

Lung Cancer: Targets and Therapy 2019:10

Amivantamab in EGFR Exon 20 Insertion– Mutated Non–Small-Cell Lung Cancer Progressing on Platinum Chemotherapy: Initial Results From the CHRYSALIS Phase I Study Keunchil Park, MD, PhD¹; Eric B. Haura, MD²; Natasha B. Leighl, MD³; Paul Mitchell, MD⁴; Catherine A. Shu, MD⁵; Nicolas Girard, MD, PhD⁶; Santiago Viteri, MD⁷; Ji-Youn Han, MD, PhD⁸; Sang-We Kim, MD, PhD⁹; Chee Khoon Lee, MD¹⁰;

Keunchil Park, MD, PhD¹; Eric B. Haura, MD²; Natasha B. Leighl, MD³; Paul Mitchell, MD⁴; Catherine A. Shu, MD⁵;
Nicolas Girard, MD, PhD⁶; Santiago Viteri, MD⁷; Ji-Youn Han, MD, PhD⁸; Sang-We Kim, MD, PhD⁹; Chee Khoon Lee, MD¹⁰;
Joshua K. Sabari, MD¹¹; Alexander I. Spira, MD, PhD¹²; Tsung-Ying Yang, MD, PhD¹³; Dong-Wan Kim, MD, PhD¹⁴;
Ki Hyeong Lee, MD, PhD¹⁵; Rachel E. Sanborn, MD¹⁶; José Trigo, MD¹⁷; Koichi Goto, MD, PhD¹⁸; Jong-Seok Lee, MD, PhD¹⁹;
James Chih-Hsin Yang, MD, PhD²⁰; Ramaswamy Govindan, MD²¹; Joshua M. Bauml, MD²²; Pilar Garrido, MD, PhD²³;
Matthew G. Krebs, MD, PhD²⁴; Karen L. Reckamp, MD²⁵; John Xie, PhD²⁶; Joshua C. Curtin, PhD²⁶; Nahor Haddish-Berhane, PhD²⁶;
Amy Roshak, BS²⁶; Dawn Millington, MS²⁶; Patricia Lorenzini, MS²⁶; Meena Thayu, MD²⁶; Roland E. Knoblauch, MD, PhD²⁶; and Byoung Chul Cho, MD, PhD²⁷

• Amivantamab (JNJ-61186372) is a fully human EGFR MET bispecific antibody with immune cell–directing activity designed to engage two distinct driver pathways in NSCLC.

• By binding to each receptor's extracellular domain, amivantamab can inhibit ligand binding, promote receptor-antibody complex endocytosis and degradation, and induce Fc-dependent trogocytosis by macrophages and antibody-dependent cellular cytotoxicity by NK cells.

RESULTS

- OVERALL RR 40%
- CBR (SD AT ATLEAST 11 WEEKS/RESPONSE)- 74%
- MEDIAN DOR -11.1 months.
- MEDIAN PFS- 8.3 Months.
- MEDIAN OS 23 Months.

Response per RECIST	Efficacy Population ($n = 81$)
ORR, % (95% CI) ^a	40 (29 to 51)
CBR, % (95% CI) ^b	74 (63 to 83)
Best response, No. (%)	
CR	3 (4)
PR	29 (36)
SD	39 (48)
PD	8 (10)
NE	2 (2)

Parameter	ORR (%)	No./Total No	. ORR, % (95% CI)
Overall	⊢∳-1	32/81	40 (29 to 51)
Age, years			
< 65	⊢	21/48	44 (30 to 59)
≥ 65	⊢-•	11/33	33 (18 to 52)
Sex			
Male	⊫⊸	15/33	46 (28 to 64)
Fomale	⊢⊸⊣	17/48	35 (22 to 51)
Race ^b			
Asian	⊢⊫	17/40	43 (27 to 59)
Non-Aslan	⊢ –	14/32	44 (26 to 62)
Baseline ECOG PS			
0	┝┿╼╼┥	14/26	54 (33 to 73)
≥1	┝╾━┼┥	18/55	33 (21 to 47)
Previous lines of therapy			
1	┠━╋╄┥	10/31	32 (17 to 51)
2	┠─●┼┥	7/24	29 (13 to 51)
≥ 3	┡━━┥	15/26	58 (37 to 77)
History of smoking			
Yes	⊩ ⊸⊨⊣	13/38	34 (20 to 51)
No	┝┿╋╼╼┥	19/43	44 (29 to 60)
History of brain metastases			
Yes	⊢┥	7/18	39 (17 to 64)
No	+-∳1	25/63	40 (28 to 53)
Previous Immunotherapy			
Yes	⊢∔∎—₽	17/37	46 (30 to 63)
No	⊢ • ⊢ •	15/44	34 (21 to 50)
Previous EGFR TKI			
Yes	⊢ +•	10/20	50 (27 to 73)
No	H-4-1	22/61	36 (24 to 49)
	0 20 40 60 80	100	

ADVERSE EVENTS

TABLE 2. Summary of AEs		
Event	Safety Population (n = 114), No. (%)	Patients Treated at the RP2D (n = 258), No. (%)
Any AE	113 (99)	257 (100)
Grade \geq 3 AE	40 (35)	101 (39)
Serious AE	34 (30)	79 (31)
AE leading to death	8 (7)	13 (5)
AE leading to discontinuation	11 (10)	17 (7)
AE leading to dose reduction	15 (13)	26 (10)
AE leading to dose interruption*	40 (35)	88 (34)

	Safety Population ($n = 114$), No. (%)			Patients Treated at the RP2D (n = 258), No. (%)				
Most Common AE (≥ 10%)	Total	Grade 1	Grade 2	Grade ≥ 3	Total	Grade 1	Grade 2	Grade \geq 3
Rash ^b	98 (86)	43 (38)	51 (45)	4 (4)	202 (78)	101 (39)	94 (36)	7 (3)
Infusion-related reaction	75 (66)	9 (8)	63 (55)	3 (3)	167 (65)	21 (8)	140 (54)	6 (2)
Paronychia	51 (45)	28 (25)	22 (19)	1 (1)	104 (40)	50 (19)	51 (20)	3 (1)
Hypoalbuminemia	31 (27)	6 (5)	22 (19)	3 (3)	63 (24)	21 (8)	38 (15)	4 (2)
Constipation	27 (24)	18 (16)	9 (8)	0	58 (23)	36 (14)	22 (9)	0
Natsoa	22 (19)	17 (15)	5 (4)	0	55 (21)	40 (16)	14 (5)	1 (0.4)
Dyspnea	22 (19)	12 (11)	8 (7)	2 (2)	52 (20)	28 (11)	13 (5)	11 (4)
Stomatitis	24 (21)	11 (10)	13 (11)	0	50 (19)	33 (13)	17 (7)	0
Peripheral edema	21 (18)	20 (18)	1(1)	0	50 (19)	43 (17)	5 (2)	2 (1)
Pruritus	19 (17)	11 (10)	8 (7)	0	49 (19)	40 (16)	9 (4)	0
Fatigue	21 (18)	15 (13)	4 (4)	2 (2)	47 (18)	29 (11)	16 (6)	2 (1)
Cough	16 (14)	11 (10)	5 (4)	0	40 (16)	25 (10)	15 (6)	0
Decreased appetite	16 (14)	7 (6)	9 (8)	0	39 (15)	23 (9)	16 (6)	0
Dry skin	18 (16)	18 (16)	0	0	33 (13)	32 (12)	1 (0.4)	0
Increased alanine aminotransferase	17 (15)	15 (13)	1(1)	1 (1)	30 (12)	22 (9)	5 (2)	3 (1)
Vomiting	12 (11)	10 (9)	2 (2)	0	29 (11)	22 (9)	6 (2)	1 (0.4)
Myalgia	14 (12)	12 (11)	2 (2)	0	28 (11)	23 (9)	5 (2)	0
Dizziness	9 (8)	8 (7)	0	1 (1)	28 (11)	24 (9)	3 (1)	1 (0.4)
Headache	8 (7)	4 (4)	3 (3)	1 (1)	28 (11)	17 (7)	8 (3)	3 (1)
Increased blood alkaline phosphatase	10 (9)	8 (7)	1(1)	1 (1)	28 (11)	22 (9)	4 (2)	2 (1)
Diarrhea	14 (12)	8 (7)	2 (2)	4 (4)	27 (11)	16 (6)	6 (2)	5 (2)
Back pain	12 (11)	6 (5)	6 (5)	0	26 (10)	13 (5)	11 (4)	2 (1)
Pyrexia	15 (13)	12 (11)	3 (3)	0	26 (10)	21 (8)	5 (2)	0
Hypokalemia	12 (11)	5 (4)	1(1)	6 (5)	21 (8)	11 (4)	3 (1)	7 (3)

MOBOCERTINIB

- Oral TKI approved for patients progressed on or after platinum based chemotherapy.
- RR 28%, Median DOR- 17.5 months.
- Serious adverse events-46% patients(diarrhoea , dyspnea , vomiting , pyrexia , AKI, nausea, pleural effusion and cardiac failure)

Atezolizumab plus bevacizumab and chemotherapy in non-small-cell lung cancer (IMpower150): key subgroup analyses of patients with *EGFR* mutations or baseline liver metastases in a randomised, open-label phase 3 trial

Subsc

Martin Reck, MD 🔗 🖾 • Tony S K Mok, MD • Makoto Nishio, MD • Robert M Jotte, MD • Federico Cappuzzo, MD

Francisco Orlandi, MD • et al. Show all authors • Show footnotes

In EGFR-mt patients, the median OS was not reached in arm B(ABCP) versus 18.7 months in arm C (BCP) (HR, 0.61; 95% CI, 0.29-1.28); in EGFR-mts patients, the median OS was not reached versus 17.5 months, respectively (HR, 0.31; 95% CI, 0.11-0.83); and in patients receiving prior TKIs, the median OS was not reached versus 17.5 months (HR, 0.39; 95% CI, 0.14-1.07).

PAPILLON STUDY-ONGOING

A Randomised Open Label Phase 3 Study Of Combination Amivantamab And Carboplatin – Pemetrexed Therapy, ompared With Carboplatin-Pemetrexed , In Patients With EGFR Exon 20 Ins Mutated Locally Advanced Or Metastatic NSCLC.

SUMMARY

- The preferred first-line treatment for Exon 20 insertion patients is platinum-based chemotherapy, carboplatin and pemetrexed.
- 2 approved targeted therapies for these patients, neither of them is approved in the frontline setting.
- The role of immunotherapy for these patients is still an open question about whether we should be giving them first-line chemotherapy and immunotherapy combinations, or whether perhaps patients with EGFR exon 20 insertions may have less benefit from immunotherapy.
- Role for sequencing mobocertinib and amivantamab?